
LLNL-JRNL-646956

A New Parallel Algorithm for Constructing
Voronoi Tessellations from Distributed
Input Data

D. P. Starinshak, J. M. Owen, J. N. Johnson

November 27, 2013

Computer Physics Communications



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



A New Parallel Algorithm for Constructing Voronoi
Tessellations from Distributed Input Data

D. P. Starinshak ∗a, J. M. Owena, and J. N. Johnsonb

aLawrence Livermore National Laboratory, AX Division, M/S L-38, P.O.
Box 808, Livermore, CA 94550

bLawrence Berkeley National Laboratory, Earth Sciences Division, 1
Cyclotron Road M/S 74R316C, Berkeley, CA 94720

Abstract

We present a unique parallel algorithm for generating consistent Voronoi dia-
grams from distributed input data for the purposes of simulation and visualization.
The algorithm acts as a parallel interface to any serial Delaunay or Voronoi tes-
sellation method by computing processor communication structures. The result
is a generalized methodology for adding distributed capabilities to serial tessella-
tion packages. Results from several two-dimensional tests are presented, including
strong and weak scaling of its current implementation.

1 Introduction

This article outlines a new algorithm for computing Voronoi and Voronoi-like tessellations
in a robust and efficient manner from both shared and distributed input data. The design
principle of the algorithm is unique in that any arbitrary serial method for computing
Voronoi or Delaunay tessellations may be employed. The algorithm outlines a procedure
for generating communication structures around serial tessellation packages to transform
distributed input points into Voronoi tessellation data that is consistent across processor
boundaries.

The introduction is subdivided into a discussion of Voronoi tessellations and ter-
minology (1.1), a description of the computation framework for constructing Voronoi
tessellations in shared and distributed-memory environments (1.2), and a summary of
key application areas for distributed Voronoi construction (1.3). Section 2 outlines the
parallel algorithm, including background information (2.1), a detailed statement of the
algorithm (2.2), and remarks on efficiency improvements (2.3). Finally, Section 3 demon-
strates results from a variety of two-dimension unit tests, including strong and weak
scaling of the new algorithm.

∗Corresponding author. Email address: starinshak1@llnl.gov

1



0 . 0 0 . 5 1 . 0 1 . 5 2 . 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0

0 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Figure 1: 2D Voronoi tessellation with generators (left) and related Delaunay dual tes-
sellation.

1.1 Voronoi Tessellation

Let Ω ∈ RN define a closed region of space. A tessellation of Ω defines a set of disjoint
cells whose union covers Ω. Let d(·, ·) be a distance norm on RN , and let {gi}Gi=1 be a
collection of points inside Ω. The Voronoi tessellation of Ω is given by the set of Voronoi
cells {Vi}Gi=1 with i-th cell corresponding to point gi and satisfying

Vi = { x ∈ Ω | d(x,gi) < d(x,gj) ∀j 6= i } . (1)

The points {gi}Gi=1 are termed the generators of the Voronoi tessellation, and we denote
their set G.

The dual tessellation associated with the Voronoi is known as the Delaunay tessel-
lation. Figure 1 illustrates an example Voronoi tessellation in two dimensions under
Euclidean distance norm d as well as its associated Delaunay dual. Voronoi cells are
given by arbitrary polygons, and Delaunay cells are triangles. (In 3D, cells are respec-
tively polyhedra and tetrahedra.) The mathematical relationship between Voronoi and
Delaunay tessellations is a rich and interesting subject but outside the focus of this arti-
cle. For our purposes, we simply observe that any Delaunay construction algorithm may
be used to generate a Voronoi tessellation by computing the functional dual.

In this article, we limit discussion to two and three dimensions and consider only the
Euclidean distance norm. Results and explanatory visuals are limited to two dimensions.
The terms Voronoi tessellation, Voronoi diagram, and Voronoi grid are used interchange-
ably throughout this article. The details of Voronoi construction are based largely on
geometric considerations. To that end, discussions oftentimes refer to the geometric el-
ements or data structures of a tessellation: namely, cells are composed of faces, edges,
and nodes/vertices, and two neighboring cells in a tessellation share at least one of such
elements.

Remark: Generalized Voronoi tessellations based on non-point generators may also be

2



formulated, where distances in (1) are computed with respect to generator surfaces {Γi}Gi=1

having dimension smaller than the global domain Ω [19].

1.2 Problem Statement

We seek an algorithm for constructing Voronoi diagrams based on distributed input gener-
ators. By “distributed” we mean that the global set of generators is subdivided and stored
on separate processors. Each processor sees only its local subset of generators, and no
generator is stored on more than one processor. We assume no memory is shared between
processors. Furthermore, the parallel distribution of generators may be non-disjoint and
no underlying geometric structure is assumed.

The geometric interpretation of (1) is that Voronoi cell Vi consists of all points in
Ω that are closer to its generator gi than to any other generator. The difficulty of
distributed-memory construction of this definition is apparent: the boundary of any local
generator’s Voronoi cell depends on the locations of all neighboring generators, whether
their positions are stored on the local processor or not. Parallel communication between
processors is therefore required to construct the consistent global Voronoi topology. Such
communication should strive to be efficient, minimizing both the size and frequency of
messages (i.e. generator positions) passed between processors.

The design principle of our parallel algorithm is to provide a generalized parallel
interface to any serial or shared-memory construction algorithm. We establish parallel
communication in order to determine a minimal but complete set of generator positions
from neighboring domains such that each domain can construct the consistent subset of
the global Voronoi diagram locally.

The number of serial construction algorithms for Voronoi and Delaunay diagrams
are too numerous to mention here. (See [19] for an excellent summary.) Optimally-
efficient implementations of many algorithms exist in the literature as do robust im-
plementations in many popular two- and three-dimensional tessellation libraries (for in-
stance, [23, 24, 26, 30]). We broadly divide such algorithms into two categories: direct
and dual-based algorithms. Direct algorithms construct the Voronoi directly from in-
put generators. Popular methods include incremental inclusion, divide-and-conquer, and
plane-sweep methods such as Fortune’s algorithm [8]. Dual-based algorithms compute
the Delaunay diagram directly from input generators, then construct the Voronoi as its
geometric dual.

At present, no direct algorithm for parallel Voronoi diagram construction has been for-
mulated specifically for distributed-memory platforms. So-called “stitching algorithms”
perform distributed construction by piecing together local tessellations computed on sep-
arate processors [11, 31]. However, such algorithms rely on a geometric decomposition of
a stored global set of generators–a memory-intensive process for many scientific applica-
tions [17, 28, 18]. Numerous algorithms for direct Voronoi construction on shared-memory
devices have been formulated, for instance [5].

By contrast, several parallel construction algorithms for Delaunay diagrams have been
formulated for both shared-memory [2] and distributed-memory [3, 4, 15, 28] environ-
ments. Computing the Voronoi dual from a distributed Delaunay diagram is also dis-
cussed in [28].

Remark: Many serial Voronoi construction algorithms generalize to higher dimensions,
non-Euclidean distance metrics, and non-point generators [19]. We note that the pro-

3



posed parallel algorithm depends only on the resulting tessellations that such methods
return, not on their underlying machinery. Thus our algorithm offers a means to poten-
tially parallelize the construction of Voronoi tessellations having greater generality than
those considered in this paper.

1.3 Applications

Applications for Voronoi tessellations as a mesh structure are numerous. As one of
only a handful of automatic, on-the-fly methods for tessellating a domain, the Voronoi
is a convenient mesh structure for mesh-free numerical methods or finite-volume-based
methods having a dynamic mesh topology [17, 20, 21, 28]. Voronoi meshes are also widely
used in Geographic Information Systems [13, 14] and subsurface flow calculations [18].
One particularly nice feature of the Voronoi for Lagrangian moving-mesh methods [17] is
that, under continuous motion of the generating points, dynamic evolution of the Voronoi
cells is smooth with respect to their volume topology. By way of comparison, dynamic
Delaunay triangulation in general changes discontinuously (and globally so) as triangles
flip edges.

Voronoi diagram generation is also robust to changes in length scale, making it an
attractive data structure for physical models that span several spatial scales, such as
astrophysical hydrodynamics, geophysical flows, and fluid dynamics [17, 20, 21, 28]. As
an intuitive means of decomposing domains, Voronoi tessellations are a useful tool for
visualizing discrete, spatially-distributed data and dynamically allocating resources in
parallel molecular dynamics simulations [12, 22].

Applications for centroidal Voronoi diagrams are particularly numerous. The genera-
tors of such tessellations coincide with the geometric centroids of their associated Voronoi
cells (see Figure 2). Centroidal tessellations satisfy a number of important optimality con-
ditions, with applications ranging from image processing and data compression to data
interpolation methods, point quadrature, and minimal-error finite differences. Consider
[6] for an excellent overview of these ideas.

Uses for Voronoi diagrams as finite element meshes are explored in [7, 27]. Such
meshes require high amounts of grid regularity to ensure numerical accuracy; the authors
explore methods for efficiently optimizing Voronoi mesh geometry to that end. Similarly,
the authors of [32] propose using boundary-restricted Voronoi diagrams to iteratively
improve mesh isotropy. We note that iterative optimization schemes oftentimes require
repeated construction of Voronoi diagrams to achieve convergence. Such schemes benefit
greatly from parallel construction methods as a means to improve overall efficiency.

2 Parallel Algorithm

This section describes the parallel algorithm for distributed Voronoi grid generation. The
design principle of the algorithm is unique in that an arbitrary serial Voronoi or Delaunay
construction method may be employed in its implementation.

2.1 Background and Terminology

We consider a distributed generator set: each processor sees only a local subset of the
global generator set. The global set is never stored on any single processor. The parallel

4



− 0 . 4 − 0 . 2 0 . 0 0 . 2 0 . 4

− 0 . 4

− 0 . 2

0 . 0

0 . 2

0 . 4

− 0 . 4 − 0 . 2 0 . 0 0 . 2 0 . 4

− 0 . 4

− 0 . 2

0 . 0

0 . 2

0 . 4

− 0 . 4 − 0 . 2 0 . 0 0 . 2 0 . 4

− 0 . 4

− 0 . 2

0 . 0

0 . 2

0 . 4

Figure 2: From left to right, a Voronoi tessellation after 0, 4, and 100 iterations of Lloyd’s
algorithm [16]. Generators (red circles) move towards cell centroids (blue squares) with
each iteration. The tessellation slowly converges to a centroidal Voronoi diagram.

Figure 3: Diagrams generated to establish communication: local diagram on each pro-
cessor, with visible generator cells shaded darker (left); and the visible mesh, identical
on every processor, generated using the set of all visible generators to check adjacency
(right). The top-right and bottom-left domains do not communicate.

algorithm establishes communication between spatially-distributed (and not necessarily
disjoint) domains of points. We say that two processors P and Q communicate if, in
the global Voronoi diagram, there exists at least one generator stored on P and one
generator stored on Q whose Voronoi cells neighbor one another (that is, share a Voronoi
face, edge, or node). Using generator positions communicated from neighboring domains,
a consistent subset of the full Voronoi diagram is computed locally.

We begin by defining terms. Let G be the global generator set and GP the subset
stored on processor P . Let CP be the convex hull of point set GP . We define the local
diagram on processor P by the Voronoi diagram constructed from GP and bounded inside
its convex hull (see Figure 3, left).

5



Figure 4: Diagrams generated post-communication: diagram constructed on the top-right
processor using points from neighboring domains (left); cells from nonlocal generators will
be deleted. The final diagram on each domain overlaid (right).

To establish communication, we define the set of visible generators on each processor
P , denoted VP . A generator is visible if its Voronoi cell in the local diagram has at
least one exterior element (face, edge, node). The visible sets for four different domains
is illustrated in Figure 3 by shaded cells. Note that VP always contains the vertices
of convex hull CP ; however, the set of hull vertices alone are not sufficient to establish
communication. (See Section 2.3, Remark 1.) In general, for O(N2) local generators in
2D, the visible set is of size approximately O(N) points.

The visible set is used to determine communication. In particular, if two domains
are disjoint (i.e. their local convex hulls are non-intersecting) but neighbor one another,
adjacent cells on separate domains correspond to visible generators.

The argument for this is straightforward. Suppose processors P and Q communicate
such that the Voronoi cell of generator gP on P neighbors the Voronoi cell of gQ on Q
in the global diagram. Further, assume CP and CQ are disjoint. (We return to the non-
disjoint case later.) Finally, suppose neither gP nor gQ are visible. This implies that all
of their local Voronoi elements lie completely inside their respective processors’ convex
hulls.

Let x be a point on the element shared by gP and gQ. We show that the existence of
x contradicts the two generators not being visible:

• x cannot be inside the local Voronoi cell of gP or on its boundary. Otherwise, gQ

would also be inside CP , contradicting the fact that the convex hulls are disjoint.

• x cannot be outside the local Voronoi cell of gP . This would make x closer to some
other generator in GP than to gP , thus violating the Voronoi property (1) locally.

The same reasoning applies to gQ. If x can be neither inside nor outside either of two
generators’ local cells, then gP and gQ cannot share a Voronoi element in the global
diagram. We arrive at a contradiction unless at least one of gP and gQ is visible.

6



2.2 Algorithm Statement

Each processor first computes its local Voronoi diagram and determines its set of visible
generators. This can be accomplished by finding all local Voronoi cells intersected by the
planar segments composing the local convex hull boundary.

Once computed, each processor then sends its visible set to every other processor.
Although the potential exists for this to be a large number of point, we note that it is a
dimensional reduction from the full local set: only points on the bounding surface of the
processor are shared, not those on its interior volume. For large numbers of processors,
this step may lead to a computational bottleneck for the algorithm. (See Section 2.3,
Remark 4.)

At this point, processor P has access to the visible set from all other processors as well
as their convex hulls, by the definition of V . P establishes communication by performing
two tests locally:

(i) Hull Intersection: If convex hulls CP and CQ intersect, then P and Q likely
communicate.

(ii) Adjacency: A new Voronoi diagram is constructed on each domain using the full
set of shared visible generators. We refer to this as the visible diagram and note
that it is guaranteed to be identical on every domain (see Figure 3, right). If a cell
whose generator belongs to P is adjacent to a cell whose generator belongs to Q on
the visible diagram, then P and Q communicate.

Any processor Q satisfying either (i) or (ii) are added to P ’s list of neighboring processors.
Each processor now maintains a consistent list of its neighbors. A second and final

communication stage is performed: each processor shares its full generator set with each
of its neighbors. A final Voronoi diagram is then constructed using the set of local gen-
erators plus the generators from each of the neighbors (see Figure 4, left). Voronoi faces,
edges, and nodes are accumulated, and the neighbor list is revised (if necessary) based
on the existence of shared elements. Cells not belonging to the local domain are deleted,
leaving behind a local Voronoi diagram whose topology is consistent across processor
boundaries (see Figure 4, right). We summarize the algorithm below.

Parallel Algorithm:

Stage 1: Establish Communication

1. Construct local Voronoi diagram using local generator set, bounded by convex
hull.

2. Compute set of visible generators and share with all other processors. Note
this stage includes communicating the convex hulls.

3. Construct visible Voronoi diagram using the set of all visible generators. (Di-
agram is identical on each processor.)

4. Evaluate tests to establish domain neighbor list:

(i) Hull intersection: does another domain’s convex hull intersect the local
hull?

(ii) Cell adjacency: does a Voronoi cell from another domain neighbor any
local cell in the visible diagram?

7



5. Send local generator set to neighbors.

Stage 2: Compute Final Diagram

1. Construct Voronoi diagram from local generators plus neighboring domain
generators.

2. Identify shared faces, edges, and nodes and revise neighbor list, if necessary.

3. Delete nonlocal cells from diagram.

Remark: Note that hull intersection does not imply communication in general. It is
possible for the test to return a “false positive” for non-convex decompositions of the
global generator set. (For instance, consider concentric rings of generators, with each
ring assigned to a separate domain.) For the sake of robustness in the algorithm, we
allow positive hull intersection to imply communication, at the potential cost of more
communication than strictly necessary. This is only an issue for pathological domain
decompositions.

2.3 Remarks on Efficiency

Remark 1: The set of visible points on a processor may be large, especially when gener-
ators are clustered close to the convex hull. This can severely impact parallel efficiency
for large numbers of processors. It is reasonable to ask whether we really need to share
all visible points. Can we get by sending only the convex hull vertices? Unfortunately
the answer is no, as illustrated in Figure 5. The bottom of three disjoint domains has a
visible point near the boundary of its convex hull (left). The top and bottom domains
share a common edge on the global diagram (center). However, if only convex hull points
are shared when computing the visible diagram (right), the middle domain can “shield”
the top and bottom domains from seeing one another in the adjacency test. In general,
an arbitrary number of cells on the visible diagram may shield two neighboring processors
from seeing one another.

Remark 2: Sharing the full set of local generators with all neighboring processors is suffi-
cient to construct a consistent Voronoi topology, but it is not necessary. Using a smaller
subset would decease message size and improve parallel efficiency, especially for large
numbers of processors. It is reasonable to ask whether the visible set itself constitutes a
sufficient subset of points. Unfortunately, the answer is again no. The case of neighbor-
ing processors having intersecting convex hulls is clear. Non-visible generators on each
processor can have neighboring Voronoi cells in the global diagram. The case of disjoint
neighboring processors is less obvious. Consider Figure 6: a point can be on the interior
of its processor’s local convex hull (i.e. not visible) but be close enough to a point on a
neighboring processor (left) to influence its Voronoi cell on the global diagram. If the
bottom processor shares only its visible set (center), then the neighboring processor will
compute an incorrect Voronoi topology locally. Sharing the full set (right) results in a
globally-consistent topology.

It may be possible for each processor to compute a sufficient subset of generators to
share with neighbors by computing a second visible diagram using the full set of local
generators and the visible sets of all its confirmed neighbors. This hypothesis is not yet

8



− 4 − 3 − 2 − 1 0 1 2 3 4

− 3

− 2

− 1

0

1

2

3

− 4 − 3 − 2 − 1 0 1 2 3 4

− 4

− 3

− 2

− 1

0

1

2

3

4

− 4 − 3 − 2 − 1 0 1 2 3 4

− 4

− 3

− 2

− 1

0

1

2

3

4

Figure 5: Local diagrams on each convex hull, colored by processor (left) and the final
diagram (center); the diagram composed only of convex hull vertices, and excluding
the visible set, (right) does not capture communication between the top and bottom
processors.

tested; we regard it as part of ongoing efficiency improvements for the parallel algorithm.

not visible

convex hull

Figure 6: Zoom in of the convex hull boundary of local Voronoi tessellation and a single
generator from a neighboring processor (left). The Voronoi diagram computed on the
neighboring processor is incorrect if the first processor only shares its visible set (center)
compared to sharing its full set (right).

Remark 3: The hull intersection test may be narrowed. For processors P and Q, a better
test would check if any point in the visibility set of P is inside CQ and vice versa. This
potentially reduces the number of “false positives” in the communication list and cuts
back on the total number of send/receive operations.

Remark 4: Sharing the set of visible points with every processor is not mandatory for the
algorithm to succeed. Preprocessing may be done to approximate a domain’s communi-
cation list, for instance by quantizing processor locations using a global octree. Such a
strategy would improve efficiency for massively-parallel computations and speed up the
construction of the visible diagram on each processor.

9



3 Results

The following set of results were obtained using Polytope, an open-source library for
Voronoi grid generation [34]. An implementation of the parallel algorithm exists within
Polytope.

In addition, many of the generated tessellations conform to a given input boundary
(from simple boxes to complicated, non-convex figures). In each case, an unbounded
Voronoi diagram is computed using generators lying inside the input boundary. Voronoi
cells are then clipped by the boundary geometry, in the spirit of [32, 33], returning a
boundary-conformal tessellation. Note that in the case of non-convex boundaries, the
tessellation may no longer be strictly Voronoi along those boundaries.

Example Boundaries

Figure 7 presents a collection of complicated 2D example boundaries. In most cases, 2000
random generator positions are distributed across 36 processors. Color changes indicate
domain boundaries. The parallel algorithm respects non-convex regions, and Voronoi
topology is consistent across domain boundaries.

Centroidal Relaxation

Centroidal Voronoi diagrams possess a number of attractive properties for applications in
image processing, discrete statistics, and finite element quadrature [6]. Further, dynamic
simulations computed on centroidal Voronoi meshes benefit from approximately-equal
angles and aspect ratios within cells [17].

Parallel construction significantly improve the efficiency of iterative optimization schemes
which attempt to relax generator positions to cell-centroid locations. Capabilities are
demonstrated on a toroidal boundary, with 4000 generators distributed over 20 proces-
sors. The diagram is relaxed using 1000 iterations of Lloyd’s algorithm [16]. Figure 8
gives the log of the condition number for each cell before and after relaxation as a rel-
ative measure of grid optimization [9]. Cell shapes approach regular hexagons, and the
condition number approaches a constant value everywhere.

Moving Generators: Taylor-Green Vortex

The following test demonstrates the robustness of the parallel algorithm. 50× 50 genera-
tors initially on a unit lattice are decomposed disjointly onto 16 domains. The generators
are then moved smoothly following a prescribed background velocity from the Taylor-
Green vortex [29]. This test highlights the robustness of the parallel communication
algorithm since each update of the generator positions can lead to changes in processor
communication. Voronoi meshes at times 0, 0.5, 2, and 4 are given in Figure 9.

Note that while the original domain decomposition at time 0 (upper-left panel of
Figure 9) allows our algorithm to successfully reduce the number of processors commu-
nicating with one and other, by the end state (in the lower-right panel) essentially all
domains are in communication. While we loose the efficiency of parallel Voronoi gener-
ation as the problem proceeds, it is a nice demonstration of how the algorithm remains
robust as we transition from a reasonable domain decomposition to a pathological one.

10



Figure 7: Distributed diagram computed on a collection of complicated boundaries. Col-
ors indicate different computational domains.

Cosmological Dataset

The following test presents a particularly challenging situation for Voronoi grid gener-
ation. The input consists of more than 2 million points distributed according to an
underlying spatial structure but with point densities varying over 5 orders of magnitude.
The generators in this example correspond to point masses and are taken from a meshless
N -body simulation of cosmological-scale structure growth.

Figure 10 gives the resulting Voronoi diagram, zoomed into smaller and smaller length
scales. Cells are colored by the log of the area, with values spanning 10−12 to 10−2.
Problems of this size benefit greatly from parallel construction. In this example, the
full point set was decomposed onto 64 processors; it took 89 seconds to construct the

11



Figure 8: Centroidal relaxation performed on 4000 input generators distributed over 20
processors. Log condition number plotted for the initial mesh and after 1000 iterations
of Lloyd’s algorithm (top). Zoom in of the relaxed mesh showing domain decomposition
(bottom).

tessellation.

Scaling Study

We present parallel scaling results for the problem of meshing a unit square using G input
generators on N processors. Three domain decompositions are considered and illustrated
in Figure 11.

Optimal : generators and domains are laid out on a Cartesian lattice, with equal
numbers of points per processor.

Unbalanced : points are randomly-distributed and assigned to processors to give
spatially-disjoint domains (as in Figure 7). Work is not balanced between domains;
generators per processor can differ by more than a factor of two.

12



Figure 9: 50 × 50 generators distributed over 16 domains. Generator positions advect
according to a Taylor-Green vortex velocity field. Voronoi meshes at times 0, 0.5, 2, and
4. Colors indicate domain index.

Random: points are randomly-distributed and assigned randomly to processors.
This is the worst-case scenario for our algorithm, as all processors must communi-
cate with one another to form a valid topology.

Results from two different serial Voronoi tessellators are presented: a dual method us-
ing the Delaunay tessellator Triangle [24] and a direct method using the Boost.Polygon
Voronoi library utilizing Fortune’s optimal sweep algorithm [8, 30]. As expected, the
serial overhead is much smaller for the latter algorithm.

Strong Scaling:
Strong scaling results are presented in Figure 12. G = 640, 000 generators are assigned to
N processors such that per-processor workload decreases and communication increases
in N . For the unbalanced decomposition, the number of generators per processor is not

13



Figure 10: Progressive zoom-ins on a tessellation of a sample N -body data set. The
original N -body calculation (provided by Jens Villumsen) is 3D; we have extracted a slice
in z and flattened it to 2D. The upper-left panel shows the full tessellation (colored by
log(Acell)), while the upper-right, lower-left, and lower-right are progressively zoomed-in
views of a high density knot.

equal.
The various decompositions perform as expected. The random case leads to no paral-

lel speedup: all domains communicate, causing processors to compute identical meshes as
if in serial. For the other decompositions, total time decreases as per-processor workload
decreases, with the optimal case outperforming the unbalanced case. The trend flattens
out for larger numbers of processors indicating a larger and larger communication cost.
Exploring this trend for processes numbering greater than 256 is a source of future work.

Weak Scaling:
Weak scaling results are presented in Figure 13. G scales with the number of processors

14



Figure 11: Decompositions of 1024 points onto 16 processors to test different scaling
regimes: optimal (left), unbalanced (center), and random (right).

4 8 16 32 64 128 256
Processors

1.0

10

100

Lo
g
 T

im
e
 (
se

co
n
d
s)

Triangle, Random

Boost, Random

Triangle, Unbalanced

Boost, Unbalanced

Triangle, Optimal

Boost, Optimal

Figure 12: Parallel strong scaling of 512,000 generators on N processors. Generators
uniformly distributed in a unit box. Comparison of reasonable and random domain
decompositions.

15



such that each domain is assigned 2500 generators (exactly 2500 for random and opti-
mal decompositions and 2500 on average for the unbalanced case). The scaling trend,
normalized by generators per processor, was found to converge for generators numbering
greater than 2500.

The random decomposition again exhibits serial scaling, as total calculation time is
linear in the number of processors. The optimal case outperforms the unbalanced case, as
expected. However, both trends are monotonically increasing in process count, indicating
calculation costs are dominated by communication.

We would like to point out that the weak scaling results, while certainly not optimal,
are not necessarily algorithmic in nature. Current implementation of the parallel algo-
rithm has focused on robustness and generality. Work has not been done to profile the
parallel algorithm or optimize its implementation at the time data was taken. Overall,
the algorithm demonstrates the ability to compute consistent Voronoi grid topologies on
large numbers of processors without failure. Optimization of its implementation is ongo-
ing work; initial ideas for improving parallel scaling are provided in the closing remarks
of Section 2.

Conclusions

We present a novel procedure for constructing Voronoi diagrams from distributed input
data. The algorithm is unique in that it computes a parallel communication layer for any
arbitrary serial method for Delaunay or Voronoi grid generation. We have demonstrated
the robustness of the algorithm on a variety of challenging two-dimensional geometries
and input data. We have also provided initial scaling results which appear promising.
Future work involves optimization of the algorithm as well as expansion of its testing into
three dimensions.

The results presented in this paper were obtained using Polytope, an open-source
library for the construction and storage of Voronoi diagrams as unstructured mesh data.
Interested readers are encouraged to download the software and verify our results.

Acknowledgments

Our thanks to Jens Villumsen for providing the N -body simulation dataset. Thanks also
to Misha Shashkov for many productive discussions on Voronoi mesh generation. This
work was performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] F. Aurenhammer, Voronoi Diagrams: A Survey of a Fundamental Geometric Data
Structure, ACM Computing Surveys, 23(3), pp. 345-405, 1991.

[2] D. Blandford, G. Blelloch, C. Kadow, Engineering a Compact Parallel Delaunay
Algorithm in 3D, Proceedings of the Twenty-Second Annual Symposium on Compu-
tational Geometry, p. 292, 2006.

16



4 8 16 32 64 128 256
Processors

0.1

1.0

10

100

Lo
g
 T

im
e
 (
se

co
n
d
s)

Triangle, Random

Boost, Random

Triangle, Unbalanced

Boost, Unbalanced

Triangle, Optimal

Boost, Optimal

Figure 13: Parallel weak scaling for approximately 2000 generators per processor. Gen-
erators uniformly distributed in a unit box and decomposed into domains so that domain
hulls are non-overlapping.

[3] G. Blelloch, J. Hardwick, G. Miller, D. Talmor, Design and Implementation of a
Practical Parallel Delaunay Algorithm, Algorithmica, 24, pp. 243-269, 1999.

[4] N. Chrisochoides, D. Nave, Parallel Delaunay Mesh Generation Kernel, Int. J. Nu-
mer. Meth. Engng., 58, pp. 161-176, 2003.

[5] R. Cole, M. Goodrich, C. Dunlaing, A Nearly Optimal Deterministic Parallel Voronoi
Diagram Algorithm, Algorithmica, 16, pp. 569-617, 1996.

[6] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi Tessellations: Applications
and Algorithms, SIAM Review, 41(4), pp. 637-676, 1999.

[7] Q. Du, D. Wang, L. Zhu, On Mesh Geometry and Stiffness Matrix Conditioning for
General Finite Element Spaces, SIAM J. on Numer. Anal., 47(2), pp. 1421-1444,
2009.

[8] S. Fortune, A Sweepline Algorithm for Voronoi Diagrams, Algorithmica, 2, pp. 153-
174, 1987.

17



[9] R. Garimella, M. Shashkov, Polygonal Surface Mesh Optimization, Engineering with
Computers, 20, pp. 265-272, 2004.

[10] B. Gehrels, B. Lalande, M. Loskot, A. Wulkiewicz, Boost.Geometry Library (Version
1.0) , Available at http://www.boost.org (Accessed 7 June 2012).

[11] D. Jacobsen, M. Gunzburger, T. Ringler, J. Burkardt, J. Peterson, Parallel Al-
gorithms for Planar and Spherical Delaunay Construction with an Application to
Centroidal Voronoi Tessellations, Geosci. Model Dev. Discuss., 6, pp. 1427-1466,
2013.

[12] R. Koradi, M. Billeter, P. Guntert, Point-Centered Domain Decomposition for Par-
allel Molecular Dynamics Simulation, Comp. Phys. Comm., 124, pp. 139-147, 2000.

[13] H. Ledoux and C. M. Gold, Modelling Three-Dimensional Geoscientific Fields with
the Voronoi Diagram and its Dual, Int. J. Geographical. Inf. Sci., 22, pp. 547-574,
2008.

[14] H. Ledoux, Computing the 3D Voronoi Diagram Robustly: An Easy Explanation,
Voronoi Diagrams in Science and Engineering 2007 Conference Proceedings, 2007.

[15] S. Lee, C.-I. Park, C.-M. Park, An Improved Parallel Algorithm for Delaunay Tri-
angulation on Distributed Memory Parallel Computers, Parallel Processing Letters,
11, 341, 2001.

[16] S. Lloyd, Least Square Quantization in PCM, IEEE Trans. Inform. Theory, 28, pp.
129-137, 1982.

[17] R. Loubere, P.-H. Maire, M. Shashkov, J. Breil, S. Galera, ReALE: A Reconnection-
Based Arbitrary-Lagrangian-Eulerian Method, Journal of Computational Physics,
229, pp. 4724–4761, 2010.

[18] R. Merland and B. Levy and G. Caumon, Building PEBI Grids Conforming to 3D
Geological Features Using Centroidal Voronoi Tessellations, IAMG 2011 Conference
Proceedings, 2011.

[19] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, John Wiley and Sons, Chichester, West Sussex,
England, 2000.

[20] J. M. Owen, Augmenting Meshless Methods Using the Voronoi Tessellation,
SPHERIC Newsletter, 13, 2011.

[21] J. M. Owen, Applicatiions of the Voronoi Tessellation for Mesh-Free Methods, Mul-
timat [Presentation], 2011.

[22] O. Pearce, T. Gamblin, B. de Supinski, M. Schulz, N. Amato, Quantifying the
Effectiveness of Load Balance Algorithms. Int. Conf. on Supercomputing, pp. 185-
194, 2012.

[23] C. Rycroft, Voro++: A Three-Dimensional Voronoi Cell Library in C++, Chaos,
19, 041111, 2009.

18



[24] J. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, Applied Computational Geometry, 1148, pp. 203-222, 1996.

[25] J. Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geo-
metric Predicates, Discrete and Computational Geometry, 18(3), pp. 305363, 1997.

[26] H. Si (2011), Tetgen (Version 1.4.3) . Available at http://tetgen.org (Accessed 28
January 2012).

[27] D. Sieger, P. Alliez, M. Botsch, Optimizing Voronoi Diagrams for Polygonal Finite
Element Computations, Proceedings of the 19th International Meshing Roundtable,
pp. 335-350, 2010.

[28] V. Springel, E Pur Si Muove: Galilean-Invariant Cosmological Hydrodynamical Sim-
ulations on a Moving Mesh, Mon. Not. of the R. Astron. Soc., in press, 2009.

[29] G. Taylor and A. Green, Mechanism of the Production of Small Eddies from Large
Ones, Proc. Roy. Soc. A, 158, pp. 499-521, 1937.

[30] A. Sydorchuk (2010-2012), Boost.Polygon Voronoi Library (Version 1.0) . Available
at http://www.boost.org (Accessed 25 March 2013).

[31] J. Wang, C. Cui, Y. Rui, L. Cheng, Y. Pu, W. Wu, Z. Yuan, A Parallel Algo-
rithm for Constructing Voronoi Diagrams Based on Point-Set Adaptive Grouping,
Concurrency Computat.: Pract. Exper., 2013.

[32] D.-M. Yan, B. Levy, F. Sun, W. Wang, Isotropic Remeshing with Fast and Exact
Computation of Restricted Voronoi Diagram, Computer Graphics Forum, 28(5), pp.
1445-1454, 2009.

[33] D.-M. Yan, W. Wang, B. Levy, Y. Liu, Efficient Computation of 3D Clipped Voronoi
Diagram, GMP 2010 Conference Proceedings, 2010.

[34] J. Johnson, J. M. Owen, D. Starinshak (2013), Polytope (Version 0.5.17). Available
at https://bitbucket.org/jjphatt/polytope.

19


